MATH2040 Linear Algebra II

Tutorial 5

October 13, 2016

1 Examples:

Example 1

Let $V = M_{2 \times 2}(\mathbb{R}), T : V \to V$ be defined by $T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A$ for any $A \in V$, and $W = \{A \in V : A^t = A\}$. Determine whether W is a T-invariant subspace of V.

Solution

By definition, W is a T-invariant subspace of V if $T(w) \in W$ for all $w \in W$.

Note, all matrix in W must be in the form of $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ where $a, b, c \in \mathbb{R}$.

However, $T\begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} b & c \\ a & b \end{pmatrix}$, which is not a symmetric matrix and so not in W.

Thus, W is not a T-invariant subspace of V.

Example 2

Let $V = \mathbb{R}^4, T: V \to V$ be defined by T(a, b, c, d) = (a + b, b - c, a + c, a + d), and $z = e_1$.

- (a) Find an ordered basis for the T-cyclic subspace of V generated by z.
- (b) Let W be the T-cyclic subspace found in (a), find the characteristic polynomial $f_W(t)$ of $T|_W$ and the characteristic polynomial f(t) of T. Show that $f_W(t)$ divides f(t), i.e. $f(t) = f_W(t)g(t)$, where g(t) is some polynomial.

Solution

(a) By theorem, since V is finite-dimensional, so the key step is to find the largest number k such that $\{z, T(z), T^2(z), \ldots, T^{k-1}(z)\}$ is linearly independent, then this set is a basis of the T-cyclic subspace.

Note, T(z) = (1, 0, 1, 1), which is linearly independent of z.

 $T^2(z) = (1, -1, 2, 2)$, which is linearly independent of z, T(z).

 $T^{3}(z) = (0, -3, 3, 3) = 3T^{2}(z) - 3T(z)$, so the largest number k is 3 and $\{z, T(z), T^{2}(z)\}$ is an ordered basis for the T-cyclic subspace generated by z.

(b) Let α be the ordered basis found in (a) and β be the standard basis of \mathbb{R}^4 .

Then,
$$f_W(t) = \det([T|_W]_{\alpha} - tI_3) = \det\begin{pmatrix} -t & 0 & 0\\ 1 & -t & -3\\ 0 & 1 & 3-t \end{pmatrix} = -t^3 + 3t^2 - 3t = t(-t^2 + 3t - 3).$$

And
$$f(t) = \det([T]_{\beta} - tI_4) = \det\begin{pmatrix} 1-t & 1 & 0 & 0 \\ 0 & 1-t & -1 & 0 \\ 1 & 0 & 1-t & 0 \\ 1 & 0 & 0 & 1-t \end{pmatrix}$$

$$= (1-t)\det\begin{pmatrix} 1-t & -1 & 0 \\ 0 & 1-t & 0 \\ 0 & 0 & 1-t \end{pmatrix} - \det\begin{pmatrix} 0 & -1 & 0 \\ 1 & 1-t & 0 \\ 1 & 0 & 1-t \end{pmatrix}$$
$$= (1-t)^4 - (1-t)$$
$$= (1-t)[(1-t)^3 - 1]$$
$$= (1-t)(-t)[(1-t)^2 + (1-t) + 1]$$
$$= (1-t)(t)(-t^2 + 3t - 3).$$

Example 3

Let A be an $n \times n$ matrix. Prove that

$$\dim(\operatorname{span}(\{I_n, A, A^2, \cdots\})) \le n.$$

Solution

Suppose the characteristic polynomial of A is $f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$, then we have

$$f(A) = (-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I_n = 0$$
(1)

by Cayley-Hamilton Theorem.

Note, $A^n = (-1)^{n+1}[a_{n-1}A^{n-1} + \dots + a_1A + a_0I_n]$ is a linear combination of I_n, A, \dots, A^{n-1} . After multiplying A on both sides of (1), we have $A^{n+1} = (-1)^{n+1}[a_{n-1}A^n + \dots + a_1A^2 + a_0A]$ is also a linear combination of I_n, A, \dots, A^{n-1} .

Inductively, we have

$$\operatorname{span}\{I_n, A, A^2, \cdots\} = \operatorname{span}\{I_n, A, A^2, \cdots, A^{n-1}\}.$$

Thus, the dimension must not be greater than n.

2 Exercises:

Question 1 (Section 5.4 Q6(d)):

Let $V = M_{2 \times 2}(\mathbb{R}), T : V \to V$ be defined by $T(A) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} A$ for any $A \in V$, and $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- (a) Find an ordered basis for the T-cyclic subspace of V generated by z.
- (b) Let W be the T-cyclic subspace found in (a), find the characteristic polynomial $f_W(t)$ of $T|_W$ and the characteristic polynomial f(t) of T. Show that $f_W(t)$ divides f(t), i.e. $f(t) = f_W(t)g(t)$, where g(t) is some polynomial.

Question 2 (Section 5.4 Q18):

Let A be an $n \times n$ matrix with characteristic polynomial $f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$.

(a) Prove that A is invertible if and only if $a_0 \neq 0$.

(b) Prove that if A is invertible, then
$$A^{-1} = \frac{-1}{a_0} [(-1)^n A^{n-1} + a_{n-1} A^{n-2} + \dots + a_1 I_n].$$

(c) Use (b) to compute
$$A^{-1}$$
 for $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$

Question 3 (Section 5.4 Q23):

Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that v_1, v_2, \ldots, v_k are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_1+v_2+\cdots+v_k \in W$, then $v_i \in W$ for all i. (Hint: You may use mathematical induction on k.)

Solution

(Please refer to the practice problem set 5.)