MATH2040 Linear Algebra II

Tutorial 5

October 13, 2016

1 Examples:

Example 1

Let $V=M_{2 \times 2}(\mathbb{R}), T: V \rightarrow V$ be defined by $T(A)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) A$ for any $A \in V$, and $W=\left\{A \in V: A^{t}=A\right\}$. Determine whether W is a T-invariant subspace of V.

Solution

By definition, W is a T-invariant subspace of V if $T(w) \in W$ for all $w \in W$.
Note, all matrix in W must be in the form of $\left(\begin{array}{cc}a & b \\ b & c\end{array}\right)$ where $a, b, c \in \mathbb{R}$.
However, $T\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=\left(\begin{array}{ll}b & c \\ a & b\end{array}\right)$, which is not a symmetric matrix and so not in W.
Thus, W is not a T-invariant subspace of V.

Example 2

Let $V=\mathbb{R}^{4}, T: V \rightarrow V$ be defined by $T(a, b, c, d)=(a+b, b-c, a+c, a+d)$, and $z=e_{1}$.
(a) Find an ordered basis for the T-cyclic subspace of V generated by z.
(b) Let W be the T-cyclic subspace found in (a), find the characteristic polynomial $f_{W}(t)$ of $\left.T\right|_{W}$ and the characteristic polynomial $f(t)$ of T. Show that $f_{W}(t)$ divides $f(t)$, i.e. $f(t)=f_{W}(t) g(t)$, where $g(t)$ is some polynomial.

Solution

(a) By theorem, since V is finite-dimensional, so the key step is to find the largest number k such that $\left\{z, T(z), T^{2}(z), \ldots, T^{k-1}(z)\right\}$ is linearly independent, then this set is a basis of the T-cyclic subspace.
Note, $T(z)=(1,0,1,1)$, which is linearly independent of z.
$T^{2}(z)=(1,-1,2,2)$, which is linearly independent of $z, T(z)$.
$T^{3}(z)=(0,-3,3,3)=3 T^{2}(z)-3 T(z)$, so the largest number k is 3 and $\left\{z, T(z), T^{2}(z)\right\}$ is an ordered basis for the T-cyclic subspace generated by z.
(b) Let α be the ordered basis found in (a) and β be the standard basis of \mathbb{R}^{4}.

Then, $f_{W}(t)=\operatorname{det}\left(\left[\left.T\right|_{W}\right]_{\alpha}-t I_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}-t & 0 & 0 \\ 1 & -t & -3 \\ 0 & 1 & 3-t\end{array}\right)=-t^{3}+3 t^{2}-3 t=t\left(-t^{2}+3 t-3\right)$.

$$
\text { And } \begin{aligned}
f(t)=\operatorname{det}\left([T]_{\beta}-t I_{4}\right) & =\operatorname{det}\left(\begin{array}{cccc}
1-t & 1 & 0 & 0 \\
0 & 1-t & -1 & 0 \\
1 & 0 & 1-t & 0 \\
1 & 0 & 0 & 1-t
\end{array}\right) \\
& =(1-t) \operatorname{det}\left(\begin{array}{ccc}
1-t & -1 & 0 \\
0 & 1-t & 0 \\
0 & 0 & 1-t
\end{array}\right)-\operatorname{det}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 1-t & 0 \\
1 & 0 & 1-t
\end{array}\right) \\
& =(1-t)^{4}-(1-t) \\
& =(1-t)\left[(1-t)^{3}-1\right] \\
& =(1-t)(-t)\left[(1-t)^{2}+(1-t)+1\right] \\
& =(1-t)(t)\left(-t^{2}+3 t-3\right) .
\end{aligned}
$$

Example 3

Let A be an $n \times n$ matrix. Prove that

$$
\operatorname{dim}\left(\operatorname{span}\left(\left\{I_{n}, A, A^{2}, \cdots\right\}\right)\right) \leq n
$$

Solution

Suppose the characteristic polynomial of A is $f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$, then we have

$$
\begin{equation*}
f(A)=(-1)^{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}=0 \tag{1}
\end{equation*}
$$

by Cayley-Hamilton Theorem.
Note, $A^{n}=(-1)^{n+1}\left[a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}\right]$ is a linear combination of $I_{n}, A, \cdots, A^{n-1}$. After multiplying A on both sides of (1), we have $A^{n+1}=(-1)^{n+1}\left[a_{n-1} A^{n}+\cdots+a_{1} A^{2}+a_{0} A\right]$ is also a linear combination of $I_{n}, A, \cdots, A^{n-1}$.

Inductively, we have

$$
\operatorname{span}\left\{I_{n}, A, A^{2}, \cdots\right\}=\operatorname{span}\left\{I_{n}, A, A^{2}, \cdots, A^{n-1}\right\}
$$

Thus, the dimension must not be greater than n.

2 Exercises:

Question 1 (Section 5.4 Q6(d)):

Let $V=M_{2 \times 2}(\mathbb{R}), T: V \rightarrow V$ be defined by $T(A)=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) A$ for any $A \in V$, and $z=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(a) Find an ordered basis for the T-cyclic subspace of V generated by z.
(b) Let W be the T-cyclic subspace found in (a), find the characteristic polynomial $f_{W}(t)$ of $\left.T\right|_{W}$ and the characteristic polynomial $f(t)$ of T. Show that $f_{W}(t)$ divides $f(t)$, i.e. $f(t)=f_{W}(t) g(t)$, where $g(t)$ is some polynomial.
Question 2 (Section 5.4 Q18):
Let A be an $n \times n$ matrix with characteristic polynomial $f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$.
(a) Prove that A is invertible if and only if $a_{0} \neq 0$.
(b) Prove that if A is invertible, then $A^{-1}=\frac{-1}{a_{0}}\left[(-1)^{n} A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right]$.
(c) Use (b) to compute A^{-1} for $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1\end{array}\right)$.

Question 3 (Section 5.4 Q23):
Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_{1}+v_{2}+\cdots+v_{k} \in$ W, then $v_{i} \in W$ for all i. (Hint: You may use mathematical induction on k.)

Solution

(Please refer to the practice problem set 5.)

